

NH₃ emissions & N use efficiency of livestock production

Groenestein, C.M., <u>Hutchings, N.J.</u>, Haenel, H.D., Amon, B., Menzi, H., Mikkelsen, M.H., Misselbrook, T.H., van Bruggen, C., Kupper, T., Webb, J.

EAGER

- European Agricultural Gaseous Emissions Inventory Researchers Network
- A core group of scientists improving and harmonizing national NH₃ emission inventory calculations
- www.eager.ch

NH₃ emission intensity of livestock products

- Headline figure in policy support
- Analogous to the GHG emission intensity
 - GHG emission per unit mass of product
- Prefer NH₃–N emission per unit of product N
 - Allows for a direct comparison between products
- Calculate NH₃–N emission intensities:
 - For a range of products (milk, beef, eggs, chicken meat, pork)
 - In W European countries (A, CH, DE, DK, NL, UK)

Comparing products

- Emission intensity (EI) = NH₃-N/product N
- N use efficiency (NUE) = product N/feed N
- Plot El versus 1/NUE
 - Linear relationship
 - \geq NH₃-N versus feed N
- Separate data point for each country

Polar plots

- Mean of country emissions (A) = mean TAN_{EX} x mean emission/ TAN_{EX} (M)
- NH3TANEX = ((mean M * model TAN_{FX}) A)/A
- NH3_{MMS} = $((model M * mean TAN_{FX}) A)/A$
- Animal factors impact on NH3TANex
- Manure factors impact on NH3ммs
- Plot NH3mms against NH3TANex

Broiler (chicken meat)

Similar excretion

Large variations in manure emissions

Beef

High manure emission for CH but low excretion

Focus on animal welfare = less intensive, more space/animal in housing

Low manure emission for UK but high excretion

Mainly grazing = low emissions but large protein surplus in diet

Conclusions

- Across animal products, about 20% of feed N is lost as NH₃ (chickens about 12%)
- Large differences in feed N required for 1 kg product
- Large differences in NH₃ emission intensities
 - Chicken lowest, beef highest
- High emission intensities may reflect trade-offs
 - Animal welfare
 - Conversion of inedible plant products to edible animal products

Thank you

Milk

Eggs

Pork

