

Trends of monitored nitrogen species at monitoring sites in North America

Leiming Zhang¹, Irene Cheng¹, Xiaohong Yao²

¹ Air Quality Research Division, Environment and Climate Change Canada, Toronto

² Ocean University of China, Qingdao, China

Contents

- ➤ Cheng I. and Zhang L., 2016. Long-term air concentrations, wet deposition, and scavenging ratios of inorganic ions, HNO₃ and SO₂ and assessment of aerosol and precipitation acidity at Canadian rural locations. *Atmos. Chem. Phys. Discuss.*, doi:10.5194/acp-2016-918.
- ➤ Yao X. and Zhang L., 2016. Trends in atmospheric ammonia at urban, rural and remote sites across North America. *Atmos. Chem. Phys.*, 16, 11465-11475.

Goals

First study:

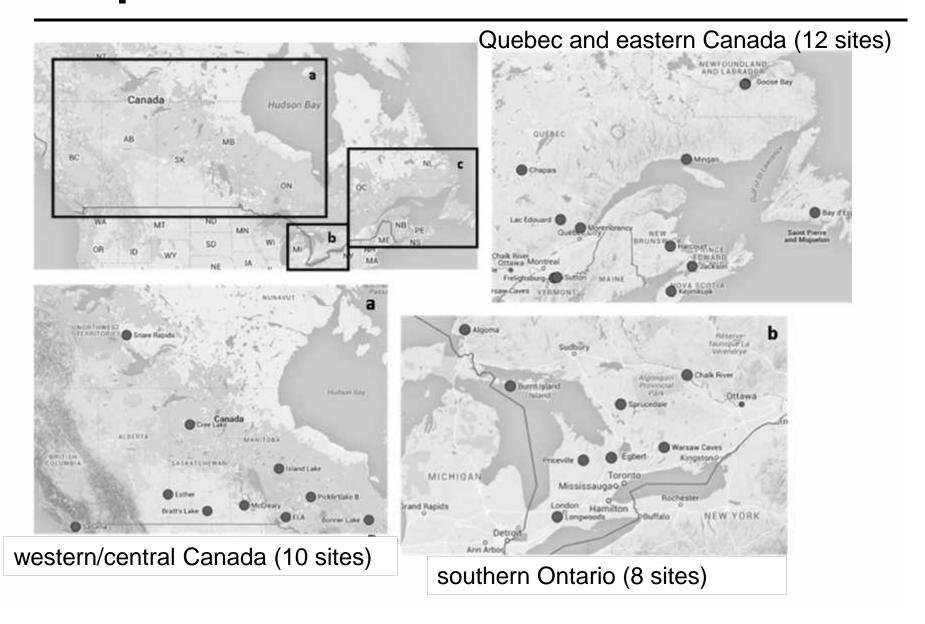
- ➤ Analyze long-term geographical and temporal trends of NO₃⁻ and NH₄⁺ in atmosphere and wet deposition in Canada
- ➤ Determine scavenging ratios of NO₃⁻ and HNO₃
- Estimate the relative contributions of particulate and gaseous nitrogen species to total nitrate and ammonium wet deposition.

Second Study

- Explore long-term trends of NH₃ and related causes at monitoring sites in Canada and U.S.
- Assess the uncertainties between different trend analysis tools

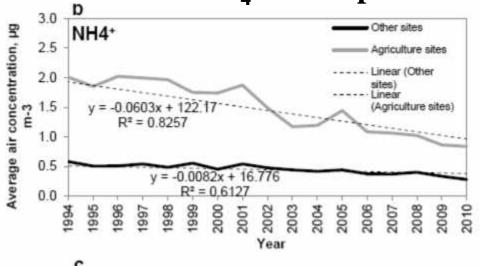
Methodology

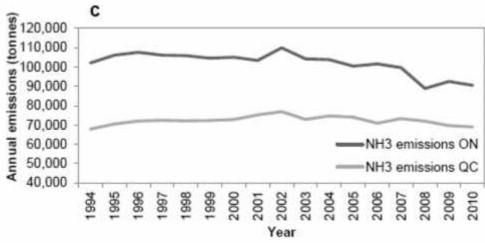
First study:


- ➤ Daily air and wet deposition samples for major inorganic ions and trace gases. Valid air concentrations from 1983-2010 at 16 sites and precipitation measurements from 1984-2011 at 30 sites
- Temporal trends analysis using regression and the Mann-Kendall analysis (Gilbert, 1987)
- Monthly scavenging ratios a pollutant's concentration in precipitation to that in air
- Relative contributions of gaseous and particulate species to nitrate and ammonium wet deposition using the scavenging ratio approach:

$$[pNO_3^-]_{prec} = W_{fPM} [pNO_3^-]_{air} P_f + W_{cPM} [pNO_3^-]_{air} (1-P_f),$$

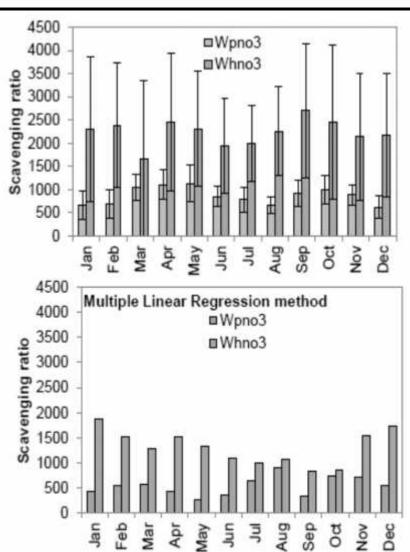
 $[HNO_3]_{prec} = [total NO_3^-]_{prec} - [pNO_3^-]_{prec}$


Second study:


Ammonia trend analysis using two trend analysis tools: Mann-Kendall analysis (Gilbert, 1987) and the Ensemble Empirical Mode Decomposition (Wu et al., 2009)

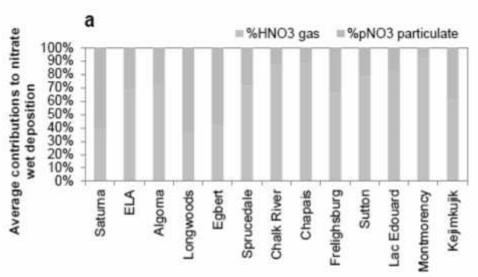
Map of 30 CAPMoN sites

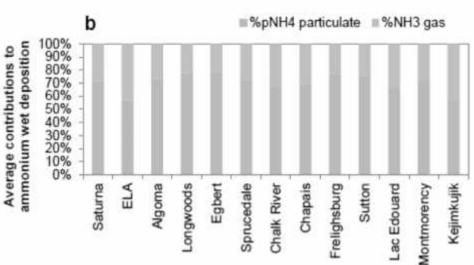
Widespread decline in atmospheric NH_4^+ in Canada, no significant trend in NH_4^+ wet deposition



- ➤ Widespread decline in annual NO₃ wet deposition, but different trends in air concentration before and after 2001
- ➤ The highest annual wet deposition rates for NH₄⁺ and NO₃⁻ were found in southeastern Canada closest to industrial and urban areas

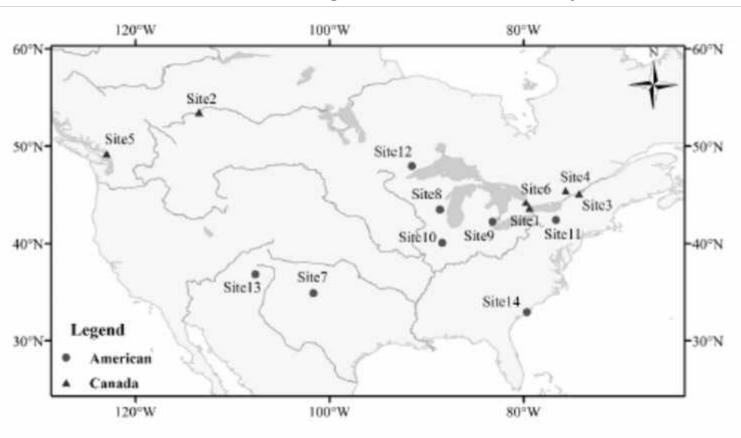
Page

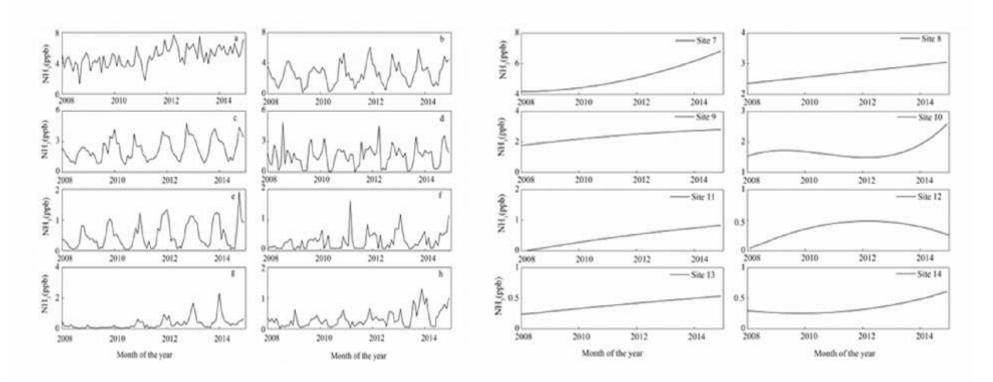

- ➤ Average scavenging ratio of HNO₃ was greater than pNO₃
- Most W_{pNO3} in literature are determined from total nitrate in precipitation and pNO_3 in air, which overestimates W_{pNO3} (by a factor of 6 on average)
- ➤ When wet NH₃ scavenging is excluded, scavenging ratios of NH₄⁺ can be overestimated by 4-48% (average: 22%).



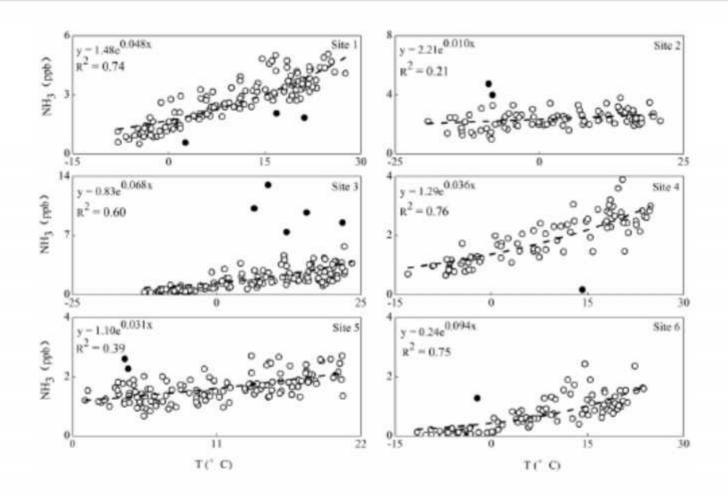
Page 8 – December

- ➤ Average contribution to nitrate wet deposition: 28±23% from pNO₃⁻ and 72±23% from HNO₃
- ➤ Wet scavenging of pNO₃⁻ was higher at the sites closest to industrial and urban areas and at coastal sites
- Average contribution to ammonium wet deposition: 70±19% from pNH₄⁺ and 30±19% from NH₃
- ➤ Particulate contributions were greater during cold months and lower during summer.


Page 9


Map of sites with NH₃ data

Six Canadian sites and eight U.S. sites (> 7-year data)


Page 10 - December 21, 2016

Monthly average NH₃ and long-term trend extracted using Ensemble Empirical Mode Decomposition at the eight U.S. sites.

Page 11 – December 21, 2016

Exponential correlations between atmospheric NH₃ and T at six Canadian sites

Results (second study)

- ➤ Moderate exponential correlations between atmospheric NH₃ and ambient T were found at nine sites local biogenic emissions and/or NH₃/NH₄⁺ partitioning were likely dominant factors at these sites.
- At the four Canadian sites, no decreasing trends in atmospheric NH₃ were found despite significant decreases in anthropogenic NH₃ emissions from main sectors in the last decade. The decreased NH₃ anthropogenic emission was compensated or overwhelmed by the increased biogenic emission and/or changes in NH₃/NH₄⁺ partitioning. This was supported by pNH₄⁺ data which exhibited a decreasing trend, likely caused by a combination of reduced SO₂ and NO_x emission and increased temperature.
- The M-K analysis showed an increasing trend in atmospheric NH₃ at seven out of the eight U.S. sites, which was also supported by the EEMD-extracted results.
- ➤ NH₃ increased by 20-50% from 2008 to 2015 at the three rural/agriculture sites and by 100%-200% at the four remote sites.