An assessment of the applicability of ambient NH\textsubscript{3} instrumentation under field conditions

M.M. Twigg1, M. Anderson1, S. Berkhout2, N. Cowan1, S. Crunaire3, E. Dammers4, V. Gaudion3, V. Gros5, M. Haaima2, C. Häni6, L. John7, M. R. Jones1, B. Kamps8, J. Kentisbeer1, T. Kupper6, S. R. Leeson1, D. Leuenberger9, N. Luettschwager10, U. Makkonen11, N. Martin12, D. Missler13, D. Mounsor7, A. Neftel14, C. Nelson15, R. Oudwater15, J.-E. Petit13, N. Redon3, J. Sintermann16, A. Stephens1, R. Zijlmans8 and C. F. Braban1

1NERC Centre Ecology and Hydrology, United Kingdom
2National Institute for public health and the environment (RIVM), Netherlands
3Mines Douai, SAGE, France
4VU University Amsterdam
5Laboratoire des Sciences du Climat et de l’Environnement, France
6Environnemental Technologies Ltd, UK
7Federal Institute of Metrology (METAS), Switzerland
8Finnish Meteorological Institute, Finland
9Air Lorraine, France
10Tiger Optics, USA
11Air Lorraine, France
12Tiger Optics, USA
13Air Lorraine, France
14Tiger Optics, USA
15Air Lorraine, France
16Air Lorraine, France

1NERC Centre Ecology and Hydrology, United Kingdom
2National Institute for public health and the environment (RIVM), Netherlands
3Mines Douai, SAGE, France
4VU University Amsterdam
5Laboratoire des Sciences du Climat et de l’Environnement, France
6Environnemental Technologies Ltd, UK
7Federal Institute of Metrology (METAS), Switzerland
8Finnish Meteorological Institute, Finland
9Air Lorraine, France
10Tiger Optics, USA
11Air Lorraine, France
12Tiger Optics, USA
13Air Lorraine, France
14Air Lorraine, France
15Air Lorraine, France
16Air Lorraine, France

1NERC Centre Ecology and Hydrology, United Kingdom
2National Institute for public health and the environment (RIVM), Netherlands
3Mines Douai, SAGE, France
4VU University Amsterdam
5Laboratoire des Sciences du Climat et de l’Environnement, France
6Environnemental Technologies Ltd, UK
7Federal Institute of Metrology (METAS), Switzerland
8Finnish Meteorological Institute, Finland
9Air Lorraine, France
10Tiger Optics, USA
11Air Lorraine, France
12Tiger Optics, USA
13Air Lorraine, France
14Air Lorraine, France
15Air Lorraine, France
16Air Lorraine, France

1NERC Centre Ecology and Hydrology, United Kingdom
2National Institute for public health and the environment (RIVM), Netherlands
3Mines Douai, SAGE, France
4VU University Amsterdam
5Laboratoire des Sciences du Climat et de l’Environnement, France
6Environnemental Technologies Ltd, UK
7Federal Institute of Metrology (METAS), Switzerland
8Finnish Meteorological Institute, Finland
9Air Lorraine, France
10Tiger Optics, USA
11Air Lorraine, France
12Tiger Optics, USA
13Air Lorraine, France
14Air Lorraine, France
15Air Lorraine, France
16Air Lorraine, France
Study aim:

Produce a series of recommendations for the best practices of the measurement of ambient NH$_3$ under field conditions.
Why recommendations required?

- Global emissions expected to increase from 65 Tg N yr\(^{-1}\) (1990) to 135 Tg N yr\(^{-1}\) (2100)\(^a\)
- Essential ambient NH\(_3\) is monitored:
 - uncertainties in the predicted emissions
 - impact on the environment and human health

\(^a\)Fowler et al. 2015 ACP.

EMEP-EEA air pollutant emission inventory guidebook – 2013, Part A, Chapter 5, Table 3-3

<table>
<thead>
<tr>
<th>NFR</th>
<th>SOURCE CATEGORY</th>
<th>SO2</th>
<th>NH3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.A.1</td>
<td>Public power, cogeneration and district heating</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>1.A.2</td>
<td>Industrial combustion</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>1.A.3.b</td>
<td>Road transport</td>
<td>C</td>
<td>E</td>
</tr>
<tr>
<td>1.A.3.a</td>
<td>Other mobile sources and machinery</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>1.A.3.c</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.A.3.d</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.A.3.e</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.A.4</td>
<td>Commercial, institutional and residential combustion</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>1.B</td>
<td>Extraction and distribution of fossil fuels</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Industrial processes</td>
<td>B</td>
<td>E</td>
</tr>
<tr>
<td>3</td>
<td>Solvent use</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Agriculture activities</td>
<td>D</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Waste treatment</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Disposal activities</td>
<td>C</td>
<td>E</td>
</tr>
<tr>
<td>-</td>
<td>Nature</td>
<td>D</td>
<td>E</td>
</tr>
</tbody>
</table>

D: 100 to 300 %
E: order of magnitude
Why recommendations required?

- Both in the European Monitoring and Evaluation Program (EMEP) and the US EPA:
 - Reference methods written in 1996 and 1999, respectively.
 - Methods are labour intensive
 - Requires specialist knowledge

- Great advancements in technology in the last 20 years

- Now a number of commercial instruments available measuring to ppt range and no longer (in theory) require specialised operators
Why recommendations required?

• Both in the European Monitoring and Evaluation Program (EMEP) and the US EPA:
 • Reference methods written in 1996 and 1999, respectively.
 • Methods are labour intensive
 • Requires specialist knowledge

• Great advancements in technology in the last 20 years

• Now a number of commercial instruments available measuring to ppt range and no longer (in theory) require specialised operators
Why recommendations required?

• Both in the European Monitoring and Evaluation Program (EMEP) and the US EPA:
 • Reference methods written in 1996 and 1999, respectively.
 • Methods are labour intensive
 • Requires specialist knowledge

• Great advancements in technology in the last 20 years

• Now a number of commercial instruments available measuring to ppt range and no longer (*in theory*) require specialised operators
Metrology for NH$_3$ in ambient air

- 1$^{\text{st}}$ June 2014: metrology for NH$_3$ in ambient air (MetNH$_3$) project started

- Project aim:

 Developing metrological traceability for the measurement of NH$_3$ in air from primary gas mixtures and instrumental standards to field application
Field site description
Field site description
Instrumentation
Instrumentation
Instrumentation
Field site Description: Layout

Key:
- Mast/mast base (black-available, red in use)
- 2 x 240V sockets (13 Amp)
- Conduit for cables from/to cabin
- 2 commando sockets (240 V, 16 Amp)
- Temporary fencing
- Mini DOAS reflectors
- Pump box
- Passive NH₃ samplers

Note: Not to scale

Approximate sampling height 1.7 m

North field

South field
Field site Description: Layout

Key:
- Mast/mast base (black-available, red in use)
- 2 x 240V sockets (13 Amp)
- Conduit for cables from/to cabin
- 2 commando sockets (240 V, 16 Amp)
- Temporary fencing
- Mini DOAS reflectors
- Pump box
- Passive NH₃ samplers

Mean wind speed = 1.81 m s⁻¹
Field site Description: Layout

Approximate sampling height 1.7 m

Key:
- Mast/mast base (black-available, red in use)
- 2 x 240V sockets (13 Amp)
- Conduit for cables from/to cabin
- 2 commando sockets (240 V, 16 Amp)
- Temporary fencing
- Mini DOAS reflectors
- Pump box
- Passive NH₃ samplers

Note: Not to scale
Summary of setup

<table>
<thead>
<tr>
<th>Location</th>
<th>Instrument</th>
<th>Total Inlet Length (m)</th>
<th>Flowrate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scaffold 1</td>
<td>Mini DOAS #1</td>
<td>Not applicable</td>
<td>Not applicable</td>
</tr>
<tr>
<td></td>
<td>Mini DOAS #2</td>
<td>Not applicable</td>
<td>Not applicable</td>
</tr>
<tr>
<td></td>
<td>Mini DOAS #3</td>
<td>Not applicable</td>
<td>Not applicable</td>
</tr>
<tr>
<td>Scaffold 2</td>
<td>AiRRmonia #1</td>
<td>0.05</td>
<td>1.0</td>
</tr>
<tr>
<td>Tow van</td>
<td>QCL (Aerodyne)</td>
<td>3</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>AP2E</td>
<td>4.69</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>AiRRmonia #2</td>
<td>6.40</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td>Picarro #1</td>
<td>4.88</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td>Low cost sensors</td>
<td>3.7</td>
<td>2.0</td>
</tr>
<tr>
<td>Green mobile laboratory</td>
<td>*LGR#1 (Economical Ammonia Analyser)</td>
<td>2.0</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td>*LGR#2 (Economical Ammonia Analyser)</td>
<td>1.45</td>
<td>2.30</td>
</tr>
<tr>
<td></td>
<td>*Picarro#2</td>
<td>2.15</td>
<td>1.35</td>
</tr>
<tr>
<td></td>
<td>*Tiger optics</td>
<td>2.64</td>
<td>0.48</td>
</tr>
<tr>
<td></td>
<td>*LSE monitors</td>
<td>1.12</td>
<td>0.10</td>
</tr>
<tr>
<td>Posts</td>
<td>MARGA</td>
<td>8.46</td>
<td>16.7</td>
</tr>
<tr>
<td></td>
<td>Alphas</td>
<td>Not applicable</td>
<td>Not applicable</td>
</tr>
</tbody>
</table>

* Instruments which are on the common manifold (Inlet to common manifold length 3.5m, with a flowrate of ~45L/min)
Summary of setup

<table>
<thead>
<tr>
<th>Location</th>
<th>Instrument</th>
<th>Total Inlet Length (m)</th>
<th>Flowrate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scaffold 1</td>
<td>Mini DOAS #1</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td>Mini DOAS #2</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td>Mini DOAS #3</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Scaffold 2</td>
<td>AiRRmonia #1</td>
<td>0.05</td>
<td>1.0</td>
</tr>
<tr>
<td>Tow van</td>
<td>QCL (Aerodyne)</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AP2E</td>
<td>4.69</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AiRRmonia #2</td>
<td>6.40</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>Picarro #1</td>
<td>4.88</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Low cost sensors</td>
<td>3.7</td>
<td></td>
</tr>
<tr>
<td>Green mobile laboratory</td>
<td>*LGR#1</td>
<td>2.0</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td>*LGR#2</td>
<td>1.45</td>
<td>2.30</td>
</tr>
<tr>
<td></td>
<td>*Picarro#2</td>
<td>2.15</td>
<td>1.35</td>
</tr>
<tr>
<td></td>
<td>*Undisclosed instrument</td>
<td>2.64</td>
<td>0.48</td>
</tr>
<tr>
<td></td>
<td>*LSE monitors</td>
<td>1.12</td>
<td>0.10</td>
</tr>
<tr>
<td></td>
<td>MARGA</td>
<td>8.46</td>
<td></td>
</tr>
<tr>
<td>Posts</td>
<td>Alphas</td>
<td>n/a</td>
<td>n/a</td>
</tr>
</tbody>
</table>

* Instruments which are on the common manifold (Inlet to common manifold length 3.5m, with a flowrate of ~45L/min)
23 August 2016 both fields fertilised with 35 kg N h\(^{-1}\) of urea (pellets)
Time series results

Rainfall (mm)

Individual inlets

NH₃ (ppb)

Manifold

Scaffolding

Date/time (GMT)

23/08/2016

25/08/2016

27/08/2016

Airrmonia #2 (5 min)
Aerodyne QCL (1 s)
MARGA (1 hour)
AP2E (1 min)
Picarro #1 (1 min)

LSE (1 min)
LGR #1 (1 s)
LGR #2 (1 s)
Tiger Optics (1 min)
Picarro #2 (1 min)

Airrmonia #1 (1 min)
DOAS #1 (1 min)
DOAS #2 (1 min)
DOAS #3 (1 min)
Hourly data

- MARGA
- Airmonia #1
- Airmonia #2
- Picarro #1
- Picarro #2
- Mini DCAS #1
- Mini DCAS #2
- Mini DCAS #3
- *LSE
- *LGR #1
- *LGR #2
- OCL
- Undisclosed instrument
- AP$_3$E

- ALPHAs (exposed 22/08/16 to 29/08/16)

* instrument was on the common manifold
Instruments vs Ensemble average (23/08 - 28/08)

Mini DOAS

\[y = 0.92x - 0.03 \]

\[R^2 = 0.98 \]

Wet chemistry

Individual inlets
Instruments vs Ensemble average (23/08 - 28/08)

Mini DOAS

Manifold

Wet chemistry

Individual inlets
Instruments vs Ensemble average (23/08 - 28/08)

- Mini DOAS
- Manifold
- Wet chemistry
- Individual inlets

[Graphs showing data correlation between different measurement methods and ensemble average.]
Instruments vs Ensemble average (23/08 - 28/08)

- Mini DOAS
- Manifold
- Wet chemistry
- Individual inlets
Instruments vs Ensemble average (23/08 - 28/08)

- Mini DOAS
- Manifold
- Wet chemistry
- Individual inlets
Field calibrations

• 2 dynamic and 1 static calibration systems present
• METAS traceable reference gas generator (REGAS) used to check concentrations before and after intercomparison for low flow instruments (Picarro, LGR, LSE, Tiger Optics)
• NPL static calibrator used for high flow instruments and mini DOAS
• Results still being assessed
• MetNH₃ reports will assess operational requirements and challenges for practical use of such systems in the field
Field calibrations

• 2 dynamic and 1 static calibration systems present

• METAS traceable reference gas generator (REGAS) used to check concentrations before and after intercomparison for low flow instruments (Picarro, LGR, LSE, Tiger Optics)

• NPL static calibrator used for high flow instruments and mini DOAS

• Results still being assessed

• MetNH₃ reports will assess operational requirements and challenges for practical use of such systems in the field
Next steps:

• Assessment on the applicability of calibration system in the field
• Evaluate the performance of instruments with the dynamic calibration system
• Produce a final series of recommendations with regards to the optimum operation for NH$_3$ instrumentation
• write measurement guideline documents for AQ networks, EMEP and WMO-GAW
Next steps:

• Assessment on the applicability of calibration system in the field

• Evaluate the performance of instruments with the dynamic calibration system

• Produce a final series of recommendations with regards to the optimum operation for NH$_3$ instrumentation

• write measurement guideline documents for AQ networks, EMEP and WMO-GAW
Next steps:

- Assessment on the applicability of calibration system in the field
- Evaluate the performance of instruments with the dynamic calibration system
- Produce a final series of recommendations with regards to the optimum operation for NH$_3$ instrumentation

- write measurement guideline documents for AQ networks, EMEP and WMO-GAW
Next steps:

• Assessment on the applicability of calibration system in the field
• Evaluate the performance of instruments with the dynamic calibration system
• Produce a final series of recommendations with regards to the optimum operation for NH₃ instrumentation
• write measurement guideline documents for AQ networks, EMEP and WMO-GAW
Conclusions:

• Though technology has advanced users need some understanding in order to choose the right instrument for their application.

• Low-flow instruments either need minimal inlet or a high-flow inlet with sub-sampling off for operation.

• Simple measurement guidelines are needed.

• Recommended that there should be a world centre for ammonia measurements for WMO-GAW.

• When measurements are undertaken quality control procedures need to be implemented.
Conclusions:

- Though technology has advanced users need some understanding in order to choose the right instrument for their application.
- Low-flow instruments either need minimal inlet or a high-flow inlet with sub-sampling off for operation.
- Simple measurement guidelines are needed.
- Recommended that there should be a world centre for ammonia measurements for WMO-GAW.
- When measurements are undertaken quality control procedures need to be implemented.
Conclusions:

• Though technology has advanced users need some understanding in order to choose the right instrument for their application.

• Low-flow instruments either need minimal inlet or a high-flow inlet with sub-sampling off for operation.

• Simple measurement guidelines are needed.

• Recommended that there should be a world centre for ammonia measurements for WMO-GAW.

• When measurements are undertaken quality control procedures need to be implemented.
Conclusions:

• Though technology has advanced users need some understanding in order to choose the right instrument for their application

• Low-flow instruments either need minimal inlet or a high-flow inlet with sub-sampling off for operation

• Simple measurement guidelines are needed

• Recommended that there should be a world centre for ammonia measurements for WMO-GAW.

• When measurements are undertaken quality control procedures need to be implemented
Conclusions:

• Though technology has advanced users need some understanding in order to choose the right instrument for their application.

• Low-flow instruments either need minimal inlet or a high-flow inlet with sub-sampling off for operation.

• Simple measurement guidelines are needed.

• Recommended that there should be a world centre for ammonia measurements for WMO-GAW.

• When measurements are undertaken quality control procedures need to be implemented.
Acknowledgements:

Co-authors acknowledgements:

This work was funded by the French Ministry of Environment (“Bureau de l’Air du Ministère de l’Environnement, de l’Energie, et de la Mer”) and lead by the national reference laboratory for air quality monitoring (LCSQA). The authors also acknowledge the excellent work of Laurence Depelchin and Emmanuel Tison for laboratory tests and campaign preparation.

Collaborators

Stakeholders

Project partners:

Passam Takachiho, Radiello
Thank you for listening
Any Questions?

Thanks to:

EMRP
European Metrology Research Programme
Programme of EURAMET

The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union.

For the funding of this work

CEH
Centre for Ecology & Hydrology
Natural Environment Research Council

MetNH₃

NERC
Science of the Environment