Increased Influence Of Nitrogen Limitation On Carbon Dioxide Emissions From Future Land Use And Land-use Change (LULUC)

Prasanth Meiyappan¹, Atul K. Jain¹,* and Joanna House²

¹University of Illinois, Urbana, IL 61801, USA
²University of Bristol, UK

*Email: jain1@illinois.edu

Acknowledgements
NASA, NSF
Some Basic Definitions

• “Land use (LU)” refers to management without changing the land cover, such as wood harvest and agricultural management (e.g., cropping practices and irrigation)

• “Land use change (LUC)” refers to conversion of one land cover type to another, such as clearing forest to grow crops.

• CO_2 emissions from LULUC represents the “net effect”
 - Including CO_2 sources (emissions from deforestation, logging, and other direct human activities) and
 - CO_2 sinks (as vegetation regrows following land disturbance).
LULUC and C and N Dynamics (ISAM-C)
LULUC and C and N Dynamics (ISAM-C)

- CO₂ Fertilization: CO₂ ↓
- Deforestation: CO₂ ↑
- Abonnement: CO₂ ↓
- Establishment: CO₂ ↓
- Growth: CO₂ ↓
- Competition: CO₂ ↑↓

↓ Net Sink ↑ Net Source
LULUC and C and N Dynamics (ISAM-NC)

- Primary Forests
- Secondary Forests
- CO₂ & N Deposition
- N can act as a limiting nutrient and impact plant productivity
- N Fertilizer Application

Vegetation dynamics
Growth
Establishment
Deforestation
Land use
Farm abandonment
Forest Management and Secondary Forest

• Historically, more secondary forests have resulted from wood harvest than from agricultural abandonment, underscoring the importance of forest management in estimating LULUC emissions

• The 21st century scenarios based CMIP5 project a 380-1080% rise in global total forest due to wood harvest compared to those of the 20th century
Objectives

• Quantify the contributions of LULUC to terrestrial carbon emissions, for the period 1800-2100

• How these contributions are impacted by the N dynamics
 - Use of ISAM land surface model with carbon and nitrogen dynamics
 - Use of three different LULUC reconstruction over the period 1800-2012
 - Use of 4 IPCC RCP for LULUC data for the 21st century data
Direct and Indirect Emissions

- We study the relative contribution of
 - the **direct effects** of human LULUC activities

 versus

 - the **indirect effects** of human LULUC activities via environmental changes (climate, CO$_2$, and nitrogen deposition) to total LULUC emissions
Schematic Diagram of the Current Version of ISAM

Photosynthesis, hydrology and energy components

- Dynamic growth of Different PFTs

Phenology
- Dynamic development with accumulated heat
- Dynamic response to extreme environmental condition

Carbon & Nitrogen allocation
- Adaptive response of leaf, stem, root and rhizome carbon to light, water and nutrient stresses

Vegetation structure
- Dynamic development of LAI, canopy height, and root depth with accumulated carbon biomass in leaf, stem, leaf and rhizome.
- LAI response to photoperiod
- Root depth and distribution response to water and nutrient stress

Biogeochemistry components

- Season-to-interannual variability
- 1 hourly temporal scale
- 0.5x 0.5 degree spatial resolution
LULUC Activities

- Considered four major LULUC activities:
 - cropland expansion and abandonment,
 - pastureland expansion and abandonment,
 - urbanization, and
 - regrowth due to wood harvest.
LULUC Data

Historical Data (≤ 2005):
- Used three global historical data sets of cropland & pastureland
 - SAGE (ISAM-RF), HYDE (ISAM-HYDE), Houghton (ISAM-HH)
- A common data set for historical wood harvest and urban land
 - GLM (Hurtt et al., 2011)

Future Data (> 2005):
- The future projections for LULUC (cropland, pastureland, and wood harvest) are based on the four RCPs derived.
Estimated Net Exchange of C (gC/m²/yr) for the 2000s in Secondary Forests

Positive values represent net C release to the atmosphere and negative values represent net C storage in terrestrial biosphere.

- C stocks in forests are increasing in recent years due to reforestation and forest management.

Positive values represent net C release to the atmosphere and negative values represent net C storage in terrestrial biosphere.

Jain et al. (2013, GCB)
Estimated Net Exchange of C (gC/m2/yr) for the 2000s in Secondary Forests

- C stocks in forests are increasing in recent years due to reforestation, abandonment and management (wood harvest)
- In some regions accumulation of C is reduced where N is a limiting nutrient or enhanced if the additional N is deposited in the forest regrowing regions

Positive values represent net C release to the atmosphere and negative values represent net C storage in terrestrial biosphere

Jain et. al. (2013, GCB)
Model Simulated LULUC Emissions (Pg/Century)

Meiyappan et al. (2015, GBC)

LUC (green bars) and LU (brown bars)
Model Simulated LULUC Emissions (Pg/Century)

LUC (green bars) and LU (brown bars)
Model Simulated LULUC Emissions (Pg/Century)

LUC (green bars) and LU (brown bars)
Model Simulated LULUC Emissions (Pg/Century)

LUC (green bars) and LU (brown bars)
Conclusions

• N limitation reduces regrowth rates of vegetation in temperate areas resulting in higher net carbon emissions.

• Exclusion of N dynamics leads to an underestimation of LULUC emissions by around 34-52 PgC (20-30%) during the 20th century and by 128-187 PgC (90-150%) during the 21st century
CO$_2$ emissions from land-use change affected more by nitrogen cycle, than by the choice of land-cover data

ATUL K. JAIN*, PRASANTH MEIYAPPAN*, YANG SONG* and JOANNA I. HOUSE†
Thank You
Extra Slides
Model-Simulated response to key Nitrogen variables illustrated using RCP8.5 simulations

Meiyappan et. al. (2015, GBC)
NPP for Secondary Forests - With and Without N limitation, RCP 8.5 Scenarios

Meiyappan et. al. (2015, GBC)
ISAM and Its Applications

Integration of nitrogen cycle dynamics into the Integrated Science Assessment Model for the study of terrestrial ecosystem responses to global change
Xiaojuan Yang,¹ Victoria Wittig,¹ Atul K. Jain,¹ and Wilfred Post²

Nitrogen attenuation of terrestrial carbon cycle response to global environmental factors
Atul Jain,¹ Xiaojuan Yang,¹ Haroon Kheshgi,² A. David McGuire,³ Wilfred Post,⁴ and David Kicklighter⁵

Biogeosciences, 7, 3041–3050, 2010
www.biogeosciences.net/7/3041/2010/
doi:10.5194/bg-7-3041-2010
© Author(s) 2010. CC Attribution 3.0 License.
Contributions of secondary forest and nitrogen dynamics to terrestrial carbon uptake
X. Yang, T. K. Richardson, and A. K. Jain
Climate, N Cycle, LULCC uncertainty
Three distinct global estimates of historical land-cover change and land-use conversions for over 200 years

Pranath MEIYAPPAN, Atul K. JAIN (✉)

Meiyappan and Jain (2012)
Net Change in Forest and Wood Harvest Areas

Table 1. Net Change in Forest Area Estimated by the Integrated Science Assessment Model (Net Forest Loss Including Afforestation and Forest Regrowth Following Cropland and Pastureland Abandonment; Negative Values Indicate a Net Loss in Forest Area) and the Annual Forest Harvested Areas Summed Over a Hundred Year Period (From Hutt et al. [2011])

<table>
<thead>
<tr>
<th>Region</th>
<th>20th Century</th>
<th>21st Century</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Historical</td>
<td>RCP 2.6</td>
</tr>
<tr>
<td>Global</td>
<td>-4.6</td>
<td>-2.6</td>
</tr>
<tr>
<td>Tropics</td>
<td>-2.2</td>
<td>-1.1</td>
</tr>
<tr>
<td>Nontropics</td>
<td>-2.4</td>
<td>-1.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Region</th>
<th>20th Century</th>
<th>21st Century</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Historical</td>
<td>RCP 2.6</td>
</tr>
<tr>
<td>Global</td>
<td>16</td>
<td>76</td>
</tr>
<tr>
<td>Tropics</td>
<td>6</td>
<td>45</td>
</tr>
<tr>
<td>Nontropics</td>
<td>10</td>
<td>31</td>
</tr>
</tbody>
</table>

The historical estimates are averages of the three LULUC reconstructions described in Jain et al. [2013]. The data for the 21st century correspond to the four Representative Concentration Pathways (RCPs). All units in million km²/century.
CMIP5 Dataset

RCP 8.5 – MESSAGE IAM
RCP 2.6 – IMAGE IAM