Pervasive control of soil pH on N_2O and N_2 emissions under anaerobic conditions from upland agricultural soils across China

Feifei Zhu,1, Yunting Fang1,2, Limei Zhang3, Rong Sheng2, Wenxue Wei3, Zhijeng He2,4

1Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
2State Key Laboratory of Urban and Regional Ecology, Research Centre for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
3Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
4Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, 3010, Australia

Background

- Soil N_2 emission is an important pathway of N losses, which is difficult to quantify in terms of both the magnitude and the contributions of the processes involved, yielding uncertainty in closing the N budget for agricultural systems;
- Soil pH might be the most important factor influencing both denitrification and N_2O production, but it remains largely unclear if soil pH regulate the $\text{N}_2\text{O}/(\text{N}_2\text{O} + \text{N}_2)$ ratio in natural soil pH gradients over relatively large regional scales;
- We know rather little on the contributions of denitrification, co-denitrification to N_2O production, and denitrification, co-denitrification plus anaerobic ammonium oxidation (anammox) to N_2 productions.

Objectives

- We investigate the influence of environmental factors, especially pH on N_2O and N_2 production, as well as on the $\text{N}_2\text{O}/(\text{N}_2\text{O} + \text{N}_2)$ ratios in eight areas from three representative agricultural regions across China (northeast, central and southern China);
- We also partitioned the sources of N_2 to denitrification or co-denitrification plus anammox based on the different ^{15}N isotope pairing between these processes;
- The overall objective was to improve our understanding of potential N gas losses ($\text{N}_2\text{O} + \text{N}_2$, except NO and NH_3), $\text{N}_2\text{O}/(\text{N}_2\text{O} + \text{N}_2)$ ratios, controlling factors, and responsible processes (denitrification vs. co-denitrification plus anammox) from major Chinese upland agricultural soils.

Experimental routes

- N_2 was the dominant end product of denitrification under anaerobic conditions;
- N_2 productions were high at soils with high pH;
- N_2: N_2O ratios ranged from 4 to 372.

Contributions of denitrification and co-denitrification to N_2O and N_2 productions

- Denitrification was the dominant process producing both N_2O and N_2;
- Denitrification contributed to 85~99% of N_2O, and 65~100% of N_2 productions, as compared with co-denitrification (plus anammox for N_2).