Spatial analysis of nitrogen strip trials in sugarcane

A method to match nitrogen rates to crop demand at the within-block scale to reduce nitrogen losses

Anthony Webster¹, Rob Bramley²

CSIRO AGRICULTURE AND FOOD
www.csiro.au

Issue

Elevated levels of nitrogen originating from agricultural runoff have been detected in rivers draining to the Great Barrier Reef (Bramley et al., 2009). Nitrogen loss reduction targets over the ten years to 2018 are not being met. Sugarcane is the dominant cropping system in Great Barrier Reef catchments (~380,000 ha), and is an intensive user of nitrogen fertiliser. There is a pressing need to reduce nitrogen losses from sugarcane farms to protect the Great Barrier Reef.

Method

The site was on a dark grey vertisol in the Burdekin sugarcane farming district (close to 18° 40' south, 148° 20' east) with annual average rainfall of 1464 mm. Sugarcane variety Q183 was planted in May 2012 and strips were rows wide, receiving 170, 37 or 132 kg N/ha, with the rest of the block receiving the farmers' standard application of 153 kg N/ha. The site was irrigated to be water limiting.

The site was harvested in August 2013 with a harvester fitted with a yield monitor calculating yield on a three second interval. Yield values from the resultant yield map were extracted every three metres from the centreline of each treatment strip, and along a strip adjacent to each treatment where 153 kg N/ha was applied (approximately 1.5 m away).

Moving east to west, rolling extracted yield values for ten points of the treatment strip and the ‘standard’ strip were compared via a paired two-tail t-test. P-values less than 0.01 were considered areas of significantly different yield.

Findings

The overall yield of the block averaged 186 fresh tonnes per hectare, ranging from less than 75 t/ha to greater than 206 t/ha. Along the entire eastern boundary is a zone of low yielding area, an artefact of the harvesting event. This area was excluded from the analysis.

The yield map is presented below, with the centreline of each analysed strip marked.

- Areas of the 170 strip are significantly higher than the adjacent 153 strip, however from the yield map this area appears to be part of a broad high yielding area (a).
- A large strip of reduced yield along the 37 strip can be seen (b), along with areas in the west of the block that do not have significantly reduced yield (c). Large areas of the 132 strip are not significantly different yielding to the adjacent 133 strip, although some areas are.

Practical uses of this research

The moving t-test was similarly implemented for use with an ‘N-rich’ strip in order to identify areas where response to additional N can be expected. In this instance reduced nitrogen treatments are used as ‘N limiting’ strips to identify areas where there is no response to additional nitrogen and thus where nitrogen rates could be reduced.

When the moving t-test results are considered in conjunction with the yield map, observations that are a consequence of some aspect of underlying variation in the block can be accounted for. This analysis identifies spatially where 37, 132 and 153 kg N/ha is the optimal strategy, and these results can be implemented via variable rate application, matching nitrogen rates to spatial crop demand.

Implications

Given the long history of nitrogen application in the sugarcane industry targeted at yield maximisation, it apparent the addition of an ‘N limiting’ strip and analysis of yield differences between that and ‘normal’, application may have more potential utility than an ‘N rich’ strip.

While yield maps are instructive, the simple tool of analysing nitrogen rich (or nitrogen limiting) strips using a moving t-test can add value to the interpretation. Here, we show that short-range variation in sugarcane yield can be marked, as is illustrated by the yield map. We also identify areas where rates of 37, 132 and 153 kg N/ha is the optimal strategy.

The farmer could use this information to apply nitrogen differentially at the within-block scale at rates that match crop demand in this block. This action would lead to reduced nitrogen losses, to the Great Barrier Reef.

REFERENCES

Bramley RGV (2009). Lessons from nearly 20 years of Precision Agriculture research, development and adoption as a guide to its appropriate application. Crop Protection 28, 197–217.


REFERENCES (CONT)


FOR FURTHER INFORMATION

Anthony Webster
CSIRO Agriculture and Food
McGregor Road, Girffith, Qld, 4670
(04) 1015 7540
anthony.webster@csiro.au

Rob Bramley
CSIRO Agriculture and Food
Waite Campus, Urrbrae, SA, 5064

ACKNOWLEDGEMENTS

We thank the leadshade Sam Waite for assistance in conducting this trial. We acknowledge Sugar Research Australia and CSIRO for funding the work through Access Agriculture Program. We credit Disney Pictures for the cartoons.