Drainage losses of N_2O and NO_3^- in Ferralsol is a major N-loss pathway

Peter Quin, Lukas van Zwieten, Peter Grace, Lynne Macdonald, Annette Cowie, Dirk Erler, Iain Young and Stephen Kimber

In a field repacked columns of Ferralsol had 62.8 at. % $^{15}\text{NO}_3^-$ applied at a depth of 75 mm or 200 mm on Day 0. Negligible soil NH_4^+, so N_2O was from denitrification. Surface flux and in-soil gas measured frequently, soil moisture and temperature half-hourly (all at 3 depths). All samples analysed for N_2O, some for $^{15}\text{N}_2\text{O}$ and $^{15}\text{N}_2$.

Results for columns with NO_3^- applied at a depth of 75 mm – very similar for NO_3^- applied at a depth of 200 mm.

Total direct emissions (Days 1–23) of excess $^{15}\text{N}_2\text{O}$:
- From 75 mm depth = 0.50 % and from 200 mm depth = 0.065 %, of total NO_3^- injected
- Below IPCC default of 1 %
- No emitted $^{15}\text{N}_2$ detected
- Highest in-soil content of N_2O and $^{15}\text{N}_2\text{O}$ coincided with period of high hydraulic conductivity ($K_{sat} = 71 \text{ mm h}^{-1}$).
- N_2O very soluble in water, so potentially leaching $^{15}\text{N}_2\text{O}$ from 75 mm ($\times 155$) and 200 mm ($\times 125$) respective surface fluxes at the time (Day 10).
- The default IPCC indirect emissions by leaching and runoff does not include dissolved N_2O.
- May help explain discrepancy between ‘top-down’ estimates of 3–5 % of applied N emitted as N_2O, compared with IPCC default ‘bottom-up’ total emissions of 1.3 % (indirect = 0.325%).