Why is it so important to increase nitrogen use efficiency in Rice?

- Nitrogen affects all parameters contributing to yield (Dobermann et al., 2000)
- In Sri Lanka net extent harvested in 2013 was 1.07 million ha and production 4.62 million mt (Central Bank, 2014)
- Sri Lanka has imported 0.6 mn mt of solid fertilizer in 2012, urea ~50% (National Fertilizer Secretariat; 2013) and around 64% of the imported urea used in paddy cultivation (Sirisena et al., 2001)
- Recovery of applied N 15-30% (Sirisena et al., 2001) so that nitrogen can be lost through ammonia volatilization, nitrification, denitrification, and leaching leads to high economical and environmental cost
- Nitrogen affects all parameters contributing to yield (Dobermann et al., 2000)
- Therefore increasing N-use efficiency through minimizing losses is critical in enhancing yields

Use of Nitrification and Urease inhibitors

- Nitrification Inhibitors (NI) delay the bacterial oxidation of the NH4
- Urease inhibitors (UI) delay the transformation of urea to NH4
- Ni - Nytrapyrin, ATC, TU, DCD
- UI - NBPT*, PPDA, Hydroquinone

Materials and Methods

- Pot experiment conducted in a glass house in University Experimental Station, Dodangolla, Kundasale
- Treatment combinations

<table>
<thead>
<tr>
<th>Treatment</th>
<th>100% N* (DOA recommendation)</th>
<th>75% N of DOA recommendation</th>
<th>50% N of DOA recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>No inhibitors</td>
<td>(100% N)</td>
<td>(75% N)</td>
<td>(50% N)</td>
</tr>
<tr>
<td>NI**</td>
<td>(100% N + NI)</td>
<td>(75% N + NI)</td>
<td>(50% N + NI)</td>
</tr>
<tr>
<td>UI**</td>
<td>(100% N + UI)</td>
<td>(75% N + UI)</td>
<td>(50% N + UI)</td>
</tr>
<tr>
<td>NI** + UI**</td>
<td>(100% N + UI)</td>
<td>(75% N + NI + UI)</td>
<td>(50% N + NI + UI)</td>
</tr>
</tbody>
</table>

Conclusions

Application of 50% of the recommended rate of urea treated with inhibitors could attain a grain yield similar to that of at 100% of the recommended rate of urea so that 50% of the recommended rate of urea could be saved if urea is applied with DCD and NBPT. AEN in rice could be increased by reducing N losses through treating urea with inhibitor/s (DCD and/or NBPT) when 50% of the recommended rate of urea is applied.

Results

Yield components

- Significant interaction effect of urea level and inhibitor compounds indicated that different inhibitors responded differently to different rates of urea with respect to number of panicles/m2, number of spikelets/panicle and filled grain percentage.

Grain yield

- Without urea application yield was 3.32 t ha-1
- Grain yield responded significantly to urea addition and significant interaction effect of urea level and inhibitor compound indicated that different inhibitors responded differently to different levels of urea
- At 50% urea level, grain yield was considerably increased with added inhibitors over no inhibitor treatments recording the highest grain yield in the DCD + NBPT treatment.
- The grain yield of DCD + NBPT at 50% urea rate was similar to that of 100% urea alone indicating that recommended rate of urea can be cut down by 50% without affecting grain yield if urea is amended with DCD + NBPT.
- However, adding both DCD + NBPT to 50% urea level performed greater than adding DCD and NBPT alone. Increasing availability of N to the plants through decreasing N losses by inhibitors may be the reason for the above observations.

Overall objective

To assess the influence of nitrification inhibitors (NI) and urease inhibitors (UI) on increased agronomic efficiency of nitrogen (AEN) in rice

Specific objectives

To ascertain,
- Net urea reduction achieved by adding NI and UI with urea, without affecting yield and growth of rice
- Whether N-use efficiency can be improved by adding NI and UI with urea application in rice

References
